
Abstract. Based on the spherical cavity approximation
and the Onsager model, a dipole–reaction field interac-
tion model has been proposed to elucidate the solvent
reorganization energy of electron transfer (ET). This
treatment only needs the cavity radius and the solute
dipole moment in the evaluation of the solvent reorga-
nization energy, and fits spherelike systems well. As an
application, the ET reaction between p-benzoquinone
and its anion radical has been investigated. The inner
reorganization energy has been calculated at the level of
MP2/6–31+G, and the solvent reorganization energies
of different conformations have been evaluated by using
the self-consistent reaction field approach at the HF/
6–31+G level. Discussions have been made on the cavity
radii and the values are found to be reasonable when
compared with the experimental ones of some analogous
intramolecular ET reactions. The ET matrix element has
been determined on the basis of the two-state model.
The fact that the value of the ET matrix element is about
10 times larger than RT indicates that this ET reaction
can be treated as an adiabatic one. By invoking the
classical Marcus ET model, a value of 4.9 · 107M)1s)1

was obtained for the second-order rate constant, and it
agrees quite well with the experimental one.

Key words: Dipole–reaction field interaction – Solvent
reorganization energy – Electron-transfer matrix
element – Rate constant

1 Introduction

Electron-transfer (ET) reactions between molecules and
ions in solution have been the subject of a considerable
number of experimental and theoretical studies during
the past few decades. In the framework of Marcus ET
theory, the rate constant, k, is given by [1]

k ¼ jAr2 exp �DG�=RTð Þ ; ð1Þ
with

DG� ¼ k þ DG0
� �2

=4k ; ð2Þ
where Ar2 has the dimension of the collision frequency,
r is the average center-to-center distance in the reacting
pair during the ET process, DG* is the activation free
energy, DG0 is the ‘‘standard’’ reaction free energy and is
zero for self-exchange, and k is the reorganization energy
composed of the inner reorganization energy, ki, and the
solvent reorganization energy, ko, i.e.,

k ¼ ki þ ko : ð3Þ
For the inner reorganization energy, both classical

and quantum chemical calculations can be applied, while
for the solvent reorganization energy, the dielectric
continuum models are still predominant. In these mod-
els, the solvation is distinguished into two types: equi-
librium and nonequilibrium solvation [2, 3, 4], and the
solvent reorganization energy can be expressed as the
free-energy difference between the nonequilibrium
solvation and the equilibrium solvation, i.e.,

ko ¼ Gn�eq � Geq ; ð4Þ

where Gn-eq and Geq are the nonequilibrium and the
equilibrium free energy, respectively.

Generally, an equilibrium solvation state is defined as
a state in which the total polarization of the solvent is
equilibrated to the electronic charge distribution of the
solute. It has attracted a great deal of attention during
the past few decades, and many computer simulation
methods at the ab initio level have been brought into
practical applications. Among them, continuum models
such as the polarizable continuum model (PCM) [5], the
conductor-like screening model (COSMO) [6, 7, 8], the
frequency-resolved cavity model (FRCM) [9, 10], and
solvation models (SMx) [11, 12], are rather popular at
present. These models assume that the solute molecule is
placed in a cavity surrounded by the polarizable con-
tinuum, and that the continuum yields a charge distri-
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bution on the cavity surface. However, different models
treat the charge distribution in different ways. For ex-
ample, the PCM considers the surface screening charges
as a perturbation included in the Hamiltonian for the
solute electronic structure calculations and performs a
coupled iterative procedure until self-consistency is
achieved; COSMO describes the solvent reaction field by
means of apparent polarization charges distributed on
the cavity surface and employs the boundary condition
suited to the cavities in conductor media; FRCM sub-
divides the solvent reaction field into inertial and iner-
tialess components associated with different cavities;
while SMx divides physical effects into ‘‘electrostatics’’
and ‘‘first solvation shell effects’’ and estimates these two
components through the parameterization of models.

Nonequilibrium solvation, however, has received far
less attention and its calculation has remained somewhat
unsatisfactory. Recently, there has been increasing inter-
est in developing its theory, as well as in extending the
conventional equilibrium reaction field methods to the
nonequilibrium cases. In this work, we employ the theory
developed by Lee, Kim, and Hynes [13, 14, 15, 16, 17]. It
accounts for the relative time scales associated with the
solute and solvent electronic motions via a coherent state
representation for electronic polarization and a valence-
bond description for the solute electronic structure, and
gives some quantum mechanical description of molecular
systems in solution undergoing nonequilibrium solvation.

The main aim of this work is to explore direct cal-
culation for the solvent reorganization energy. Invoking
Onsager reaction field model [18] and the point-dipole
approximation, we have proposed the dipole–reaction
field interaction model to describe the interaction be-
tween the solute and the solvent molecules and acquired
a relationship between the solvent reorganization energy
and the equilibrium electrostatic solvation free energy.
This proportional relationship enables us to directly es-
timate the solvent reorganization energy. As an appli-
cation, we have investigated the kinetic mechanics of ET
reaction between p-benzoquinone (BQ) and its anion
radical system. Such a choice is based on the following
reasons: firstly, quinone-containing systems have the
capacity to act as electron acceptors and thus they play a
major role in ET reactions of photosynthesis and respi-
ration [19, 20]; next, BQ can only form a weak hydrogen
bond with its anion radical, hence the hydrogen-bonding
interaction is weaker than the stacking interaction [21];
last, the symmetrical BQ molecules can only form a very
limited number of different conformations of the dimer,
and the experimental rate constant in solution is avail-
able [22, 23, 24, 25, 26, 27]. In addition, the structures
and vibrational spectra of benzene dimers [23, 24],
p-quinone dimers [21, 25], BQ and pyrimidine hetero-
dimers [26] were investigated by using matrix-isolation
IR spectroscopy by other authors, associated with ab
initio calculations, and a conclusion was drawn that the
stacked conformations are more stable than the planar
ones. This is very important since the stacked confor-
mations fit the spherical assumption of the Onsager
model quite well. Hence, in our present work, we have
paid attention only to the stacked conformations and

compared the theoretical results with those available in
the literature.

The outline of this article is as follows. We describe
the nonequilibrium solvation free energy and establish
the relationship between the solvent reorganization en-
ergy and the equilibrium electrostatic solvation free en-
ergy in Sect. 2. The theoretical results and corresponding
discussions are presented in Sect. 3. Our conclusions are
collected in Sect. 4.

2 Theoretical fundamentals

2.1 Equilibrium solvation free energy
and self-consistent-reaction-field scheme

In the dielectric continuum model, when all the fields are
assumed to be longitudinal, the free-energy functional
for the solute electronic wave function, W, can be
expressed as [28]

G ¼ wjH0jwh i � 1=2

Z
v

Pe þ Porð ÞEw r; qP
� �

d3r

þ 1=2

Z
v

Por Ew qr; rr
e; r

r
or

� �
� Ew q P ; re; r

r
or

� �� �
d3r : ð5Þ

In Eq. (5), H0 is the vacuum Hamiltonian of the
isolated solute, Pe and Por are the electronic polarization
and the orientational polarization, respectively, Ew(r,q)
is the electric field due to the solute charge distribution,
q, of electronic state w in a vacuum, Ew(q,re,ror) is the
electric field resulting from the solute surface charge
distribution re from Pe and ror from Por in solution. We
denote the charge distribution as qr before ET and qp

after ET within the cavity, and use r and p to refer to the
reactant and the product states of ET, respectively,
throughout of this article.

When the system is in equilibrium (qr ¼ qp), the last
integral in Eq. (5) vanishes and the expression of the
equilibrium free energy is

Geq ¼ wjH0jwh i � 1=2

Z
V

Pe þ Porð ÞEw r; qrð Þd3r : ð6Þ

Clearly, in the case of Pe and Por being in the same
direction, Eq. (6) becomes

Geq ¼ wjH0jwh i � ðe0 � 1Þ
2ðe0 � e1Þ

Z
V

PorðrÞEwðr; qrÞd3r : ð7Þ

The relationship of Pe(r)/Por(r) ¼ ve/vor and the def-
initions ve ¼ (e0 – 1)/4p and vor ¼ (e0 – e1)/4p are used
in the derivation of Eq. (7). Here e1 is the solvent op-
tical dielectric constant and e0 the solvent static dielectric
constant.

In the self-consistent-reaction-field (SCRF) scheme
associated with the Onsager model [5, 29, 30], the solute
is embedded in a spherical cavity with radius a0 sur-
rounded by the continuous medium of dielectric con-
stant e0. The dipole of the solute molecule will induce the

283



solvent molecules to form a reaction field, R, and then
the induced reaction field will in turn interact with the
solute molecule dipole. By solving the Fock equation
[31] and considering the solvent effect as a perturbation,
we can get the expression of the energy of a solute, Gs, as

Gs ¼ wjH jwh i ¼ wjH0wh i � lR ; ð8Þ
where l is the point dipole of the solute. R is
proportional to the dipole moment i.e., R ¼ gl, and
the index g depends on both e0 and a0, i.e. [18]

g ¼ 2ðe0 � 1Þ= ð2e0 þ 1Þa3
0

� �
: ð9Þ

When the solvent polarization energy is included, the
free energy of the system is given by [32]

Geq ¼ Gs þ lR=2 ¼ wjH0jwh i � lR=2 : ð10Þ
On the other hand, it is well established that in mo-

lecular orbital theory, the total energy of a system can be
expressed as the energy of the solute in a vacuum plus
the equilibrium electrostatic solvation free energy, DGeq

sol,
i.e. [5, 33]

Geq ¼ wjH0jwh i þ DGeq
sol : ð11Þ

Consequently, by comparing Eq. (11) with Eqs. (7)
and (10), one can express the equilibrium electrostatic
solvation free energy as follows:

DGeq
sol ¼ � ðe0 � 1Þ

2ðe0 � e1Þ

Z
V

PorðrÞEwðr; qrÞd3r ¼ �lR=2 :

ð12Þ
Apparently, DGeq

sol is proportional to the product of the
solute dipole moment and the reaction field resulting from
the medium polarization. If the nonequilibrium solvation
free energy takes a form similar to the equilibrium one, or
alternatively, the solvent reorganization energy can be
expressed in terms of the dipole and the reaction field, the
direct calculation of the solvent reorganization energy will
be achieved. So in the following section, we determine the
expressions of the nonequilibrium free energy and the
solvent reorganization energy.

2.2 Nonequilibrium solvation and solvent
reorganization energy

In solution, the solvent electronic motions are so fast
that the electronic polarization can quickly adjust itself
to any changes in the system and thus maintain its
equilibrium character. The arrangements of the solvent
nuclei, however, are much slower, and the orientational
polarization usually cannot follow the rapid changes
of charge distribution in the ET system. Therefore it
is obvious that the nonequilibrium solvation needs
different descriptions.

Provided that the solvent electronic polarization is
equilibrated to both the electron and the solvent orien-
tational polarization, in other words, Pe satisfies the
Born–Oppenheimer approximation, we therefore have
the following expression (Eq. 2.7 of Ref. [14]):

PeðrÞ ¼ veEwðr; qPÞ � ve

Z
V

T ðr; r0Þ Peðr0Þ þ Porðr0Þ½ d3r0 :

ð13Þ
In this work, we employ a multipole expansion [16],

instead of the form in our previous work [34], and use
the superscripts lm to denote the lm-pole component of
the field, and obtain the following relation by eliminat-
ing the Pe degrees of freedom [16]

1

vel

þ 4pðlþ 1Þ
2lþ 1

� �
Plm

e ðrÞ ¼ � 4pðlþ 1Þ
2lþ 1

Plm
or þ Ewðr; qPÞ :

ð14Þ
For the convenience of simplicity, we only consider

the dipole and ignore the higher-order terms, take l as 1
and m as 0, and write Eq. (14) as

P eq
e ðrÞ ¼ 3ðe1 � 1Þ

4pð2e1 þ 1ÞEðr; q
PÞ � 2ðe1 � 1Þ

2e1 þ 1
Por : ð15Þ

By replacing Pe in Eq. (5) with P eq
e ðrÞ from Eq. (15),

we can obtain the expression for the nonequilibrium free
energy with a boundary condition, i.e.,

Gðw;P eq
e w;Por½ ;PorÞ¼

wjH0jwh i� 3

8p
e1�1

2e1þ1

� �Z
V

Ewðr;qPÞ
�� ��2d3r

� 3

2ð2e1þ1Þþ
1

2e1

� �Z
V

PorEwðr;qPÞd3rþGor ; ð16Þ

where Gor is the self-free-energy associated with the
orientational polarization. Gor is invariant in both the
equilibrium and the nonequilibrium states. Its expression
is

Gor ¼
2p

e0 � e1

Z
V

jPorj2d3r

þ 1

2e1

Z
V

d3r
Z
V

PorT ðr;r0ÞPorðr0Þd3r0 : ð17Þ

According to Eq. (4), we can express the solvent re-
organization energy as

ko ¼ w P jH0jw P	 

� wrjH0jwrh i

� 3

8p
e1 � 1

2e1 þ 1

Z
V

Ewðr; qPÞ
�� ��2� Ewðr; qrÞ

�� ��2� �
d3r

� 3

2ð2e1 þ 1Þ þ
1

2e1

� �Z
V

Por½Ewðr; qPÞ

� Ewðr; qrÞd3r : ð18Þ

The first and second terms in Eq. (18) are expectation
values of the vacuum Hamiltonian in different electronic
states wr and wp, while the last term is the difference
of the interaction energy caused by the orientational
polarization and the electric field associated with charge
distribution, which is screened by the electronic
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polarization. In order to follow the Franck–Condon
transition from wr to wp, the two expectation energy
values should be degenerate at the ET transition state in
the gas-phase case; thus,

ko¼� 3

8p
e1�1

2e1þ1

Z
V

�
Ewðr;qPÞ
�� ��2� Ewðr;qrÞ

�� ��2�d3r

� 3

2ð2e1þ1Þþ
1

2e1

� �Z
V

Por Ewðr;qPÞ�Ewðr;qrÞ
� �

d3r:

ð19Þ
As far as a self-exchange ET is concerned, say,

B) + B fi B + B), we can safely assume that the sol-
ute has symmetric charge distributions before and in-
stantly after ET at the position of the transition state;
this means that the electric field produced by the solute
charge distribution is approximately the same in mag-
nitude and opposite in direction, i.e.,

Ew r; qrð Þ ¼ �Ew r; qP
� �

; ð20Þ
Z
V

Ew r; qrð Þ
�� ��2d3r ¼

Z
V

Ew r; qP
� ��� ��2d3r : ð21Þ

Therefore, combining Eq. (19) with Eqs. (20) and
(21) gives

ko ¼ 3

2e1 þ 1
þ 1

e1

� �Z
V

PorEwðr; qrÞd3r

¼ � 2ðe0 � e1Þ
e0 � 1

5e1 þ 1

e1ð2e1 þ 1ÞDGeq
sol : ð22Þ

Equation (22) establishes a relationship between ko

and the equilibrium solvation energy, which enables us
to calculate the reorganization energy of a self-exchange
reaction by using the standard SCRF methods of arbi-
trary cavities. Equation (22) indicates that in self-ex-
change ET reactions, the solvent reorganization energy
can be obtained by simply multiplying the equilibrium
electrostatic solvation free energy by a proportional
factor.

Under the condition of a spherical cavity and con-
sidering Eq. (12), we rewrite Eq. (22) as

ko ¼
ðe0� e1Þ

e0�1

5e1þ1

e1ð2e1þ1ÞlR

¼ 2ðe0� e1Þð5e1þ1Þ
e1ð2e0 þ1Þð2e1þ1Þa3

0

l2 : ð23Þ

Equation (23) indicates that the solvent reorganiza-
tion energy is proportional to the product of the solute
dipole and the reaction field, and thus we call this ap-
proach the dipole–reaction field interaction model. Since
the equilibrium electrostatic solvation free energy can be
evaluated through ab initio calculation with the SCRF,
it is applicable to perform the direct estimation of the
solvent reorganization energy.

For the solvent reorganization energy evaluation,
there are also some other methods. Among them, the

Lippert–Mataga relationship [16, 17, 35] is very popular.
Its expression is

ko ¼ e0 � 1

2e0 þ 1
� e1 � 1

2e1 þ 1

� �
1

a3
0

jDlj2 ; ð24Þ

where Dl is defined as the difference between the dipoles
of the excited and ground states. This expression has
been widely used in the description of absorption and
emission spectra in solution for several decades. This
expression will be used to validate Eq. (23).

3 Theoretical calculation

As an application, we perform the kinetic calculations
of ET between BQ and its anion radical. From the
experimental studies of Meisel and Fessanden [27], the
rate constant was found to be in the range of
0.5)2 · 108 M)1s)1. For the purpose of comparison,
we calculated the inner and the solvent reorganization
energies, the ET matrix element, as well as the reaction
rate constant. The discussions are given in the relevant
parts.

3.1 Geometry optimization

Owing to the D2h symmetry, BQ is a very suitable model
molecule for our studies since the BQ dimer only forms a
very limited number of conformations. In accordance
with other authors [21, 22, 23, 24, 25, 26], we focus on
four conformations of BQ–BQ) encounter complexes: a
parallel conformation, P, a crossing conformation, V,
and two T-shaped conformations, T1 and T2 (shown in
Fig. 1). In both stacked conformations P and V, the
planes of BQ and BQ) are placed in a parallel way, with
the axis through the two oxygen atoms in BQ and that
in BQ) being oriented at 0� for P and 90� for V. The
same axis is also oriented at 90� in the two T-shaped
conformations, but the donor and the acceptor are
placed in a perpendicular way, the BQ equilibrium
geometry is placed at the top in conformation T1, while
it is at the bottom in conformation T2 (Fig. 1c).

Since the Hartree–Fock (HF) self-consistent-field
method is unable to describe the dispersion forces sta-
bilizing the two aromatic rings in a stacked conforma-
tion [22], second-order Møller–Plesset perturbation
theory (MP2) was employed in our theoretical calcula-
tions. However, owing to the computational intensity of
Møller–Plesset perturbation calculations, their use is
often restricted to ‘‘single-point’’ calculations at a ge-
ometry obtained using a lower level [36]. As a result, we
initially optimized geometries of BQ and BQ– at the HF
level with the 6-31G basis set augmented with the diffuse
and polarization functions on both heavy atoms and
hydrogen atoms (6-31++G**), and then performed the
‘‘single-point’’ calculation for the equilibrium geometries
obtained at the MP2/6-31+G level. The bond para-
meters obtained at the level of HF/6-31++G** and the
energies obtained at the level of MP2/6-31+G are listed
in Table 1.
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On determining the stationary point of each confor-
mation, a full optimization usually cannot give a rea-
sonable donor–acceptor distance; the usual gradient
optimization may lead to a false convergence owing to
the weak interaction between the two moieties. To avoid
this, we maintain the respectively optimized geometries
of the donor and the acceptor and only investigate the
dependency of the total energy upon the donor–acceptor
distance under the constraint of C2m symmetry. The
equilibrium distance and the corresponding stabilization
energy at the stationary point of each conformation were
calculated at the level of MP2/6-31+G and are given in
Table 2. It should be mentioned that we only focus on
the donor–acceptor distances since this parameter is
crucial in the further kinetic calculation of ET. Hence,
no more precise treatment of the stabilization energy, for
example, the basis set superposition error correction
[37], was made in the present work.

3.2 Reorganization energy

3.2.1 Inner reorganization energy

Up to now, quantum chemistry calculations have been
proved to be applicable and efficient in the evaluation of
the inner reorganization energy. Although the ET
reaction takes place in solution, the gas-phase inner
reorganization energy might be a good approximation,
because the bond parameters both in the gas phase and
in solution are almost invariant. For a self-exchange ET
reaction

B� þ B ! B þ B� ð25Þ
we can optimize the equilibrium geometries for B) and B
and thus obtain the corresponding equilibrium energies

Eeq(B
)) and Eeq(B). On the other hand, we can calculate

the energy En)eq(B) for neutral molecule B at the
equilibrium configuration of B), but En)eq(B

)) for anion
radical B) at the equilibrium configuration of B. Thus,
as shown in Fig. 2, we can obtain the inner reorganiza-
tion energy through the energy calculation of the
isolated species, i.e.,

kiðB�=BÞ ¼ En�eqðB�Þ þ En�eqðBÞ � EeqðB�Þ � EeqðBÞ :

ð26Þ
At the MP2/6-31+G level, we performed the single-

point calculations and obtained the value of
58.87 kJ mol)1 for ki.

3.2.2 Solvent reorganization energy

We used Eqs. (23) and (24) to evaluate the solvent
reorganization energy. The only adjustable parameter is
the cavity radius, a0, and its choice has been the subject
of many discussions [30]. We use here the value of the
box occupied by the solute to approximate the cavity
value, and thus to estimate the cavity radius. We first

Fig. 1. Benzoquinone–benzo-
quinone anion radical
conformations

Table 1. Optimized geometries
of benzoquinone (BQ) and the
benzoquinone anion radical
(BQ)). The bond lengths are in
nanometers, the bond angles
are in degrees, and the energy
is in atomic units

BQ BQ)

HF/631++G** B3LYPa Exp.b HF/631++G** B3LYPa

C1O3 0.1195 0.1218 0.1222 0.1248 0.1262
C1C7 0.1489 0.1486 0.1477 0.1443 0.1452
C7C8 0.1325 0.1339 0.1334 0.1360 0.1369
C8C7C1 121.33 121.5 120.9 122.50 122.8
C7C1C5 115.92 117.1 118.2 116.63 114.4
Ec

t )379.85402 )379.92012

aFrom Ref. [38]
bFrom Ref. [39]
cEnergies at the MP2/6)31+G level in this work

Table 2. Total energy, Et, and stabilization energy, Es, of
encounter complexes. d is the optimized distance between the mass
centers of BQ and BQ), PD and PA are the total net charges on
the donor and the acceptor, respectively, and Es = Et(D) +
Et(A))Et(D…A) (kJ mol)1)

Conformation d (nm) PD PA Et (au) Es (kJ mol)1)

P 0.3458 0.97 0.03 )759.78860 37.96
V 0.3312 0.98 0.02 )759.79616 57.80
T1 0.4912 0.97 0.03 )759.78907 39.19
T2 0.5023 1.00 0.00 )759.78352 24.61
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determine the smallest box enclosing the solute, plus the
van der Waals radius of the hydrogen atom, so as to
obtain cavity volume. Then, we estimate the cavity
radius by using a0 ¼ (3VM/4p)1/3. By substituting the
estimated cavity radii for a0 in Eqs. (23) and (24) and
taking e1 ¼ 1.8 and e0 ¼ 78.5 [40] for aqueous solution,
we can perform an SCRF calculation to obtain the
solvent reorganization energies for those conformations
shown in Fig. 1. Since only the solute dipole moment is
needed, we performed this calculation at the HF/
6-31+G level, rather than at the MP2/6-31+G level,
since MP2 correction does not improve the dipole
moment. In Eq. (24) we consider that the solute dipole
only changes its direction after the Frank–Condon
transition for a self-exchange reaction. The results are
collected in Table 3.

On the other hand, according to Marcus’ two-sphere
model [1, 2, 3, 4], the solvent reorganization energy is
expressed as

ko ¼ De2 1

2rD
þ 1

2rA
� 1

dDA

� �
1

e1
� 1

e0

� �
; ð27Þ

where De is the transferred charge, and rD, rA, and dDA

are the donor sphere radius, the acceptor sphere radius,
and the ET distance, respectively. Since e¥ ¼ 1.8 and
e0 ¼ 78.5 for aqueous solution, and rD ¼ rA ¼ a in our
case, by taking the units of a and dDA in nanometers and
ko in kilojoules per mole, we can simplify Eq. (27) to the
following form:

a ¼ 76:592dDA

dDAðk0 þ 76:592Þ : ð28Þ

Using our values of ko from the SCRF calculation, we
obtained the two-sphere radius a (Table 3). We see that
the compact conformations P and V yield the smaller
two-sphere radii, while the ‘‘loose’’ conformations T1
and T2 produce larger ones. Owing to the disorder of

molecules in the liquid state, we take the average value
of 0.318 nm for these four conformations as the estimate
of the molecular radius. These values might be compared
with the molecular radii calculated from the molar
volume by using the equation [32]

ð4=3Þpa3 ¼ ðM=qÞN0 ; ð29Þ
whereN0 isAvogadro’s number andq is the density ofBQ,
say 1.318 kg dm)3 [40]. The value of a ¼ 0.32 nm so
calculated testifies the suitability of our estimated cavity
radii, and gives us confidence for the further use of the
solvent reorganization energy. On the other hand, let us
consider the Marcus two-sphere model for the estimation
of the solvent reorganization energy instead of the single-
sphere one used previously. From the value of our
calculation or the density method, the radius of BQ is
around 0.32 nm. However, the center-to-center distance
of the complex is found to bemuch smaller than the sumof
the donor and the acceptor radii. This means that there is
overlap between these two spheres. In such cases, the two-
sphere model (Eq. 27) no longer works well. Therefore,
the single-sphere model used by us is possibly a better
choice for those ‘‘compact’’ intramolecular systems.

At the same time, in order to compare our solvent
reorganization energy with the experimental results, we
also find some relevant results for ET reactions including
BQ. The well-known Miller–Closs intramolecular sys-
tems [41, 42] are good examples. The solvent reorgani-
zation energy for the biphenyl anion and BQ system, as
well as that for the 2-(9,9-dimethyl)fluorenyl anion and
BQ system which is mediated by an organic spacer, were
fitted from the observed rate constant. After cutting off
the contribution from the low-frequency torsion motion
around the central C–C bond in biphenyl, the solvent
reorganization energy of both systems is around
50 kJmol)1. These systems were also calculated by
Newton et al. [10] with their FRCM, and the results
obtained are about 45 kJmol)1. Our results are in the
range 46–67 kJmol)1, and the average value is
58.54 kJmol)1. Hence, we think our results are reason-
able for the BQ–BQ) system, although we failed to find
direct evidence from experimental measurements.

3.3 ET matrix element and the zero-overlap problem

Generally denoted as Vrp, in which r and p refers to the
initial and final state, the ET matrix element, or
equivalently the electronic coupling element, plays a
key role in controlling the rates of many ET reactions.
Consequently, over the past few decades, there have
been significant efforts to determine this quantity both

Fig. 2. A schematic description of the calculation of the inner
reorganization energy

Table 3. Cavity radii, dipole
moments, solvent reorganiza-
tion energies, and two-sphere
radii

Structure d (nm) a0 (nm) l (au) ko (kJ mol)1)a ko¢ (kJ mol)1)b a (nm)

P 0.3458 0.432 3.1975 57.87 62.48 0.274
V 0.3312 0.447 2.9990 45.96 49.61 0.276
T1 0.4912 0.528 4.6259 66.34 71.62 0.345
T2 0.5023 0.526 4.5179 64 69.10 0.354

aUsing Eq. (23)
bUsing Eq. (24)
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from experimental data and from quantum chemical
calculations [43, 44]. For systems in the gas phase,
reasonably good agreement between theory and exper-
iment has been obtained, while for ET reactions in
solution, a practical yet reliable approach, which allows
incorporation of structure-dependent electronic coupling
in their simulations, is still a major challenge for
quantum chemistry [45]. Some authors, for example,
Miller and coworkers, suggested that the solvent could
cause a significant increase in the electronic coupling at a
given donor–acceptor distance [46, 47], while others
argued that if we only treat the transferring electron, the
existence of solvent does not influence Vrp significantly,
and thus the gas-phase calculation of this quantity might
be a good approximation for that in solution [14, 45].

Up to the present, there have been several approaches
to evaluating the ET matrix element, such as the gen-
eralized Mulliken–Hush (GMH) approach [48, 49],
Koopmans’ theorem (KT) [53, 54], and the variational
treatment on electron-localized diabatic states [52, 53].
The GMH approach relates the ET element to the
transition dipole moment between the states of interest,
and this method is generally applied to investigate
charge-transfer processes by using the diagonalization of
the dipole moment matrix to define diabatic states. The
KT method approximates the state–state energy splitting
using the transition energy from one molecular orbital to
another. In the present work, we evaluate Vrp from the
direct variational treatment of the two electron-localized
nonorthogonal states. The fundamentals of this treat-
ment are given in the following paragraph.

As shown in Fig. 3, the ET matrix element is marked
as half the energy splitting at the crossing of two diabatic
electronic states gr and gp. The secular equation of the
two-state problem is given as follows:

Hrr � E Hrp � ESrp

Hpr � ESpr Hpp � E

����
���� ¼ 0 ; ð30Þ

where H is the total electronic Hamiltonian and
Hij ¼ gi|H|gj>, and S is the overlap integral of the
two diabatic state, i.e., Sij ¼ Ægi|gjæ, (i,j ¼ r,p). By repre-
senting the potential energies of the two adiabatic states

at the avoided crossing as E+ and E), respectively, Vrp

can be given by

Vrp ¼ðEþ�E�Þ=2¼ 1�S2
rp

� ��1

Hrp �Srp HrrþHpp

� �
=2

�� �� :
ð31Þ

For our BQ–BQ) self-exchange reaction, gr and gp

are degenerate energetically at the transition state. By
introducing what used to be called the linear reaction
coordinate [52], we can obtain two charge-localized
states at the crossing of the two diabatic potential-
energy surfaces, and then employ the HONDO99 [54]
program to calculate Vrp for each conformation shown
in Fig. 1.

From Table 4, we see that the P conformation gives a
normal value of Vrp, whereas trouble emerges in the V,
T1, and T2 ones and Vrp tends to be infinite. Such a result
is in fact not strange since the so-called ‘‘pseudo-or-
thogonality’’ occurs in these cases [55]. In the subroutines
linked to HONDO developed by Farazdel and Dupuis
[54, 56], for the sake of convenience in the derivation, the
overlap, Srp, between gr and gp is treated as a ‘‘prod’’
factor and is used as the denominator in the calculation.
However, when ‘‘pseudo-orthogonality’’ occurs in a
system, there is zero overlap between gr and gp and thus
‘‘prod’’ is zero; thus, ordinary treatment leads to an in-
finite value of Vrp. To solve this problem, one of the
authors developed another procedure, which differs from
what was coded in HONDO, and gave the final expres-
sion by Eq. (13) in Ref. [55]. A few subroutines were
added to the HONDO program. After the calculations,
all the values of Srp for conformations V, T1, and T2 are
zero, and finite values of Vrp are obtained (Table 4).

An alternative approach to the zero values of Vrp is to
show that gr and gp belong to different irreducible rep-
resentations according to the symmetry applied. When
BQ and BQ) are placed in the stacked conformation, the
encounter complex in each stacked conformation has
C2m symmetry. The symmetries of the diabatic states gr

and gp are also collected in Table 4, and we can see that
the irreducible representations of gr and gp for the V, T1,
and T2 structures differ from each other and the analyses
are consistent with our direct calculation.

3.4 ET reaction rate constant

From Table 4, we can see that the ET is only efficient for
the P-type conformation since the zero value of Vrp in

Fig. 3. Double-well potential of the electron-transfer reaction in
the Marcus normal region

Table 4. Electron-transfer matrix element at the UHF/6-31+G
level

Conformation

P V T1 T2

Symmetry of gr B1 B1 A2 B1

Symmetry of gp B1 B2 B2 A1

Srp 0.1779 0 0 0
Vrp (kJmol)1) 16.29 0 0 0
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the other three conformations implies that there is no
transition from the initial state to the final one. In
addition, the relatively large Vrp value of the P-type
conformation indicates that we can handle this system
by using Marcus adiabatic ET theory. Combining
Eq. (1) with the self-exchange reaction

BQ� þ BQ�!kd

k�d

BQ� � � �BQ�!ket
BQ � � �BQ� ! BQþ BQ�,

and applying the steady-state approximation, we may
express the second-order rate constant as [57]

kobs ¼
kd

1 þ kdk�d=ketkd
: ð32Þ

Associated with Eyring’s equation, the final expression
of the observed rate constant reads

kobs ¼
kd

1 þ kd

kdZ
kd expðDG�=RT Þ

: ð33Þ

In general, one can take k)d/kd, kd, and Z as 1 M)1,
2 · 1010 M)1s)1, and 6.2·1012 s)1, respectively. As we
know, for the self-exchange, DG0 ¼ 0. By replacing k
with the sum of our results, say, 58.87 kJmol)1 for ki and
57.87 kJmol)1 for ko, and taking the temperature as
298.15 K, the second-order rate constant of our selected
P conformation is predicted to be 4.9 · 107 M)1s)1.
Compared with the experimental value of
6.2 · 107 M)1s)1 [27], our result is pretty satisfactory.

4 Conclusion

In this article, we have detailed the expressions of the
equilibrium free energy, the equilibrium electrostatic
solvation free energy, and the nonequilibrium free
energy. Through necessary derivations, we have estab-
lished a relationship between the solvent reorganization
energy and the equilibrium electrostatic solvation free
energy (Eq. 22). By employing the Onsager reaction field
theory, we have achieved a very condensed form which
contains only one adjustable parameter. Apparently, our
dipole–reaction field interaction model permits the direct
evaluation for the solvent reorganization energy by
performing a SCRF calculation.

As an application, we have investigated ET between
BQ and its anion radical. Four conformations were
taken into account. After performing theoretical calcu-
lations of the inner and the solvent reorganization en-
ergies, we discussed the validity of the dipole–reaction
field interaction model. Agreement between our esti-
mated two-sphere radius and that calculated from the
density, as well as the consistency between our solvent
reorganization energies and the experimental ones of
some analogous intramolecular systems, gives us confi-
dence to apply our model to spherelike systems. Calcu-
lations of the ET matrix element were also made, and
only the stacked P conformation gives a nonzero Vrp. In
conformations V, T1, and T2, there is the ‘‘pseudo-or-
thogonality’’ problem, and two approaches were given
to explain it. Since the value of Vrp is found to be about
10 times larger than RT, which indicates a large
interaction between the two diabatic states, we are
encouraged to apply the classical Marcus theory. The

second-order rate constant from our calculations agrees
quite well with the experimentally observed one.

All the ab initio calculations were carried out with the
HONDO99 package [54].
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